AIfES 2  2.0.0
aifes_core.h
Go to the documentation of this file.
1 
28 #ifndef AIFES_CORE
29 #define AIFES_CORE
30 
31 #include "aifes_math.h"
32 #include "aifes_config.h"
33 
34 #define TRUE 1
35 #define FALSE 0
36 
37 #define AILAYER_SETTINGS_TRAINING_MODE 0
38 #define AILAYER_SETTINGS_TRAINABLE 1
39 #define AILAYER_SETTINGS_BATCH_MODE 2 // When true, a whole batch is processed in a single forward pass
40 #define AILAYER_SETTINGS_NO_INPUT_GRADIENT 3 // When true, no input gradient is calculated
41 #define AILAYER_SETTINGS_KEEP_INPUT_BUFFER_FOR_RESULT 4 // When true, no input gradient is calculated
42 
43 #define AILAYER_SETTINGS_SET(settings, mask, selector, value) (settings = ((settings) & ~(mask << (selector))) | ((value) << (selector)))
44 #define AILAYER_SETTINGS_IS(settings, mask, selector) (((settings) >> (selector)) & mask)
45 
46 typedef struct ailayer ailayer_t;
47 typedef struct ailoss ailoss_t;
48 typedef struct aimodel aimodel_t;
49 typedef struct aiopti aiopti_t;
50 
52 typedef struct aicore_losstype aicore_losstype_t;
53 typedef struct aicore_optitype aicore_optitype_t;
54 
55 
83  const char *name;
92  void (*print_specs)(const ailayer_t *self);
93 };
94 
122  const char *name;
131  void (*print_specs)(const ailoss_t *self);
132 };
133 
161  const char *name;
170  void (*print_specs)(const aiopti_t *self);
171 };
172 
181 struct aimodel {
185  uint16_t layer_count;
189 };
190 
191 
252 struct ailayer {
271  uint32_t settings;
277  ailayer_t *input_layer;
278  //ailayer_t *brother_input_layer; /**< (NOT_IN_USE) Chained list if multiple input layer are present else NULL. */
279 
280  ailayer_t *output_layer;
281  //ailayer_t *brother_output_layer; /**< (NOT_IN_USE) Chained list if multiple output layer are present else NULL. */
283 
288  ailayer_t *next_scheduled;
289  ailayer_t *prev_scheduled;
291 
300  void (*calc_result_shape)(ailayer_t *self);
301 
310 
315  void (*forward)(ailayer_t *self);
316 
317  // Maybe for later purpose
318  //void (*sizeof_infmem)(struct aifes_layer_t *, void *);
319  //void (*set_infmem)(struct aifes_layer_t *, void *);
320 
321  // ------------------ Used for training only: -----------------------
322 
334  void **optimem;
336 
341  void (*backward)(ailayer_t *self);
342 
351  uint32_t (*sizeof_paramem)(const ailayer_t *self);
352  void (*set_paramem)(ailayer_t *self, void* memory_ptr);
353  void (*init_params)(ailayer_t *self);
355 
360  uint32_t (*sizeof_fwdmem)(const ailayer_t *self);
361  uint32_t (*sizeof_bwdmem)(const ailayer_t *self);
362  void *tempmem;
364 
372  uint32_t (*sizeof_trainmem)(const ailayer_t *self);
373  void (*set_trainmem)(ailayer_t *self, void* memory_ptr);
375 };
376 
377 
385 struct ailoss {
397  void (*calc_loss)(ailoss_t *self, const aitensor_t *target_data, void *result);
398 
404  void (*calc_delta)(ailoss_t *self, const aitensor_t *target_data);
405 };
406 
407 
438 struct aiopti {
450  uint32_t (*sizeof_optimem)(aiopti_t *self, const aitensor_t *params);
451 
459  void (*init_optimem)(aiopti_t *self, const aitensor_t *params, const aitensor_t *gradients, void *optimem);
460 
466  void (*zero_gradients)(aiopti_t *self, aitensor_t *gradients);
467 
472  void (*begin_step)(aiopti_t *self);
473 
481  void (*update_params)(aiopti_t *self, aitensor_t *params, const aitensor_t *gradients, void *optimem);
482 
487  void (*end_step)(aiopti_t *self);
488 };
489 
490 
491 #endif // AIFES_CORE
AIfES 2 math interface.
Type indicator of the layer.
Definition: aifes_core.h:82
void(* print_specs)(const ailayer_t *self)
Set a function to print specs of the layer (for example size, constants)
Definition: aifes_core.h:92
const char * name
Name of the layer type (for example "Dense")
Definition: aifes_core.h:83
Type indicator of the loss to check for the loss type.
Definition: aifes_core.h:121
void(* print_specs)(const ailoss_t *self)
Set a function to print specs of the loss.
Definition: aifes_core.h:131
const char * name
Name of the loss type (for example "Mean Squared Error")
Definition: aifes_core.h:122
Type indicator of the optimizer to check for the optimizer type.
Definition: aifes_core.h:160
void(* print_specs)(const aiopti_t *self)
Set a function to print specs of the optimizer.
Definition: aifes_core.h:170
const char * name
Name of the optimizer type (for example "ADAM")
Definition: aifes_core.h:161
AIfES layer interface.
Definition: aifes_core.h:252
void ** optimem
Array of memory pointers with length trainable_params_count.
Definition: aifes_core.h:334
aitensor_t result
The result of the forward function is stored here.
Definition: aifes_core.h:292
void(* set_paramem)(ailayer_t *self, void *memory_ptr)
Set and distribute the memory block internally.
Definition: aifes_core.h:352
void(* backward)(ailayer_t *self)
Calculate the backward pass and write the result to the deltas tensor.
Definition: aifes_core.h:341
const aicore_layertype_t * layer_type
Type of the layer (for example ailayer_dense_type)
Definition: aifes_core.h:253
void * layer_configuration
Layer specific configurations (back-link from abstract layer class to implementation)
Definition: aifes_core.h:254
uint8_t trainable_params_count
Number of trainable parameter tensors.
Definition: aifes_core.h:331
void(* set_trainmem)(ailayer_t *self, void *memory_ptr)
Set and distribute the memory block internally.
Definition: aifes_core.h:373
void * tempmem
Pointer to the memory for the forward pass, backward pass and the optimizer.
Definition: aifes_core.h:362
void(* forward)(ailayer_t *self)
Calculate the forward pass and write the result to the result tensor.
Definition: aifes_core.h:315
void(* calc_result_shape)(ailayer_t *self)
Calculate and write the shape to the result tensor.
Definition: aifes_core.h:300
aitensor_t deltas
The result of the backward function is stored here.
Definition: aifes_core.h:323
aitensor_t ** trainable_params
Array of tensor pointers with length trainable_params_count.
Definition: aifes_core.h:332
uint32_t(* sizeof_bwdmem)(const ailayer_t *self)
Size of required memory for the backward pass (in bytes).
Definition: aifes_core.h:361
void(* calc_result_tensor_params)(ailayer_t *self)
If available, calculate and set the tensor_params of the result tensor.
Definition: aifes_core.h:309
uint32_t(* sizeof_paramem)(const ailayer_t *self)
Size of required memory (in bytes).
Definition: aifes_core.h:351
uint32_t settings
General layer settings like freezing weights or switching between training and evaluation mode.
Definition: aifes_core.h:271
uint32_t(* sizeof_fwdmem)(const ailayer_t *self)
Size of required memory for the forward pass (in bytes).
Definition: aifes_core.h:360
aitensor_t ** gradients
Array of tensor pointers with length trainable_params_count.
Definition: aifes_core.h:333
void(* init_params)(ailayer_t *self)
Initialize the (trainable and not trainable) parameters of the layer with default initializers.
Definition: aifes_core.h:353
uint32_t(* sizeof_trainmem)(const ailayer_t *self)
Size of required memory (in bytes).
Definition: aifes_core.h:372
AIfES loss interface.
Definition: aifes_core.h:385
void * loss_configuration
Loss specific configurations (back-link from abstract loss class to implementation)
Definition: aifes_core.h:387
const aicore_losstype_t * loss_type
Type of the loss (for example ailoss_mse_type)
Definition: aifes_core.h:386
ailayer_t connection_layer
Dummy layer for docking to the layer structure.
Definition: aifes_core.h:389
void(* calc_delta)(ailoss_t *self, const aitensor_t *target_data)
Calculate the error on the target data and write it to the deltas tensor of connection layer.
Definition: aifes_core.h:404
void(* calc_loss)(ailoss_t *self, const aitensor_t *target_data, void *result)
Calculate the loss / cost for the model on the given targets.
Definition: aifes_core.h:397
Indicator for the used datatype.
Definition: aifes_math.h:44
AIfES artificial neural network model.
Definition: aifes_core.h:181
uint16_t trainable_params_count
Total number of trainable parameter tensors.
Definition: aifes_core.h:186
uint16_t layer_count
Total number of layers of the model (usually autogenerated).
Definition: aifes_core.h:185
ailayer_t * input_layer
Input layer of the model that gets the input data.
Definition: aifes_core.h:182
ailayer_t * output_layer
Output layer of the model.
Definition: aifes_core.h:183
ailoss_t * loss
The loss or cost function of the model (only for training).
Definition: aifes_core.h:188
AIfES optimizer interface.
Definition: aifes_core.h:438
void * optimizer_configuration
Optimizer specific configurations (back-link from abstract aiopti class to implementation)
Definition: aifes_core.h:440
void(* init_optimem)(aiopti_t *self, const aitensor_t *params, const aitensor_t *gradients, void *optimem)
Initialize the optimization memory for a trainable parameter tensor.
Definition: aifes_core.h:459
void(* begin_step)(aiopti_t *self)
Called in the beginning of every model optimization step for parameter initialization.
Definition: aifes_core.h:472
const aicore_optitype_t * optimizer_type
Type of the optimizer (for example aiopti_sgd_type)
Definition: aifes_core.h:439
void(* update_params)(aiopti_t *self, aitensor_t *params, const aitensor_t *gradients, void *optimem)
Performs an optimization step on the given tensor.
Definition: aifes_core.h:481
uint32_t(* sizeof_optimem)(aiopti_t *self, const aitensor_t *params)
Calculates the optimization memory size for a trainable parameter tensor.
Definition: aifes_core.h:450
void * learning_rate
The learning rate configures the training speed.
Definition: aifes_core.h:443
const aimath_dtype_t * dtype
The data-type of the parameter that the optimizer can optimize and the learning rate.
Definition: aifes_core.h:441
void(* zero_gradients)(aiopti_t *self, aitensor_t *gradients)
Set the gradient tensor to zero.
Definition: aifes_core.h:466
void(* end_step)(aiopti_t *self)
Called in the end of every model optimization step.
Definition: aifes_core.h:487
A tensor in AIfES.
Definition: aifes_math.h:89