AIfES 2  2.0.0
aimath_q31_default.h File Reference

Math functions for Q31 data type, default implementation. More...

Go to the source code of this file.

Functions

void aimath_q31_default_linear32 (const aitensor_t *a, const aitensor_t *b, const aitensor_t *c, aitensor_t *result)
 Performs a matrix multiplication of Q31 matrices a and b and adds a vector c to each row. More...
 
void aimath_q31_default_mat_mul (const aitensor_t *a, const aitensor_t *b, aitensor_t *result)
 Performs a matrix multiplication of Q31 matrices a and b. More...
 
void aimath_q31_default_multiply (const aitensor_t *a, const aitensor_t *b, aitensor_t *result)
 Performs an element wise multiplication of Q31 tensors a and b (Hadamard product) More...
 
void aimath_q31_default_scalar_mul (const void *scalar, const aitensor_t *a, aitensor_t *result)
 Performs a scalar multiplication (scaling) of Q31 tensor a and a scalar. More...
 
void aimath_q31_default_tensor_add_different_shift (const aitensor_t *a, const aitensor_t *b, aitensor_t *result)
 Performs an element wise addition of Q31 tensors a and b with different shifts. More...
 
void aimath_q31_default_tensor_add_same_shift (const aitensor_t *a, const aitensor_t *b, aitensor_t *result)
 Performs an element wise addition of Q31 tensors a and b with same shifts. More...
 
void aimath_q31_default_tensor_sub_different_shift (const aitensor_t *a, const aitensor_t *b, aitensor_t *result)
 Performs an element wise subtraction of Q31 tensors a and b with different shifts. More...
 
void aimath_q31_default_tensor_sub_same_shift (const aitensor_t *a, const aitensor_t *b, aitensor_t *result)
 Performs an element wise subtraction of Q31 tensors a and b with same shifts. More...
 
void aimath_q31_default_copy_tensor (const aitensor_t *from, aitensor_t *to)
 Performs an element wise copy of Q31 tensors. More...
 
void aimath_q31_default_transpose_vector (aitensor_t *vector)
 Transposes a Q31 vector. More...
 
void aimath_q31_default_norm_squared (const aitensor_t *x, void *result)
 Calculates the squared sum of all elements in a Q31 tensor. More...
 
void aimath_q31_default_tensor_sqrt (const aitensor_t *x, aitensor_t *result)
 Calculates the element wise square root of a Q31 tensor. More...
 
void aimath_q31_default_sigmoid (const aitensor_t *x, aitensor_t *result)
 Calculates the sigmoid of each element in a Q31 tensor. More...
 
void aimath_q31_default_d_sigmoid (const aitensor_t *sigmoid_x, aitensor_t *result)
 Calculates the derivative sigmoid of each element in a Q31 tensor. More...
 
void aimath_q31_default_relu (const aitensor_t *x, aitensor_t *result)
 Calculates the rectifier (ReLU) value of each element in a Q31 tensor. More...
 
void aimath_q31_default_d_relu (const aitensor_t *x, aitensor_t *result)
 Calculates the rectifier (ReLU) derivative of each element in a Q31 tensor. More...
 
void aimath_q31_default_leaky_relu (const aitensor_t *x, const void *alpha, aitensor_t *result)
 Calculates the leaky rectifier (leaky ReLU) value of each element in a Q31 tensor. More...
 
void aimath_q31_default_d_leaky_relu (const aitensor_t *x, const void *alpha, aitensor_t *result)
 Calculates the leaky rectifier (leaky-ReLU) derivative of each element in a Q31 tensor. More...
 
void aimath_q31_default_tanh (const aitensor_t *x, aitensor_t *result)
 Calculates the tanh of each element in a Q31 tensor. More...
 
void aimath_q31_default_d_tanh (const aitensor_t *tanh_x, aitensor_t *result)
 Calculates the tanh derivative of each element in a Q31 tensor. More...
 
void aimath_q31_default_softsign (const aitensor_t *x, aitensor_t *result)
 Calculates the softsign value of each element in a Q31 tensor. More...
 
void aimath_q31_default_d_softsign (const aitensor_t *x, aitensor_t *result)
 Calculates the softsign activation derivative of each element in a Q31 tensor. More...
 
void aimath_q31_default_softmax (const aitensor_t *x, aitensor_t *result)
 Calculates the softmax value of each batch element (row) of a Q31 tensor. More...
 
void aimath_q31_default_elu (const aitensor_t *x, const void *alpha, aitensor_t *result)
 Calculates the exponential rectifier (ELU) value of each element in a Q31 tensor. More...
 
void aimath_q31_default_d_elu (const aitensor_t *x, const void *alpha, aitensor_t *result)
 Calculates the exponential rectifier (ELU) derivative of each element in a Q31 tensor. More...
 
void aimath_q31_default_zero_tensor (aitensor_t *tensor)
 Fills a Q31 tensor with zeros. More...
 
void aimath_q31_default_init_zeros (aitensor_t *tensor)
 Fills a Q31 tensor with zeros. More...
 
void aimath_q31_default_tensor_init_uniform (aitensor_t *tensor, float from, float to)
 Fills a Q31 tensor with random numbers created from a uniform distribution within given range. More...
 
void aimath_q31_default_init_glorot_uniform (aitensor_t *tensor)
 Fills a Q31 tensor with random numbers uniformly within given range, according to Glorot et al. More...
 
void aimath_q31_default_init_glorot_uniform_cdim (aitensor_t *tensor, int8_t cin_axis, int8_t cout_axis)
 Fills a Q31 tensor with random numbers uniformly within given range, according to Glorot et al. More...
 
void aimath_q31_default_init_he_uniform (aitensor_t *tensor)
 Fills a Q31 tensor with random numbers uniformly within given range, according to He et al. More...
 
void aimath_q31_default_init_he_uniform_cdim (aitensor_t *tensor, int8_t cout_axis)
 Fills a Q31 tensor with random numbers uniformly within given range, according to He et al. More...
 
int64_t aimath_q31_default_sqrt (int64_t x)
 Calculates square root of an int64 value. More...
 
void aimath_q31_default_sum_channelwise (const aitensor_t *x, int8_t channel_axis, aitensor_t *result)
 Sums up all values of a channel of the Q31 tensor x. More...
 
void aimath_q31_default_mse_gradients_sum (const aitensor_t *predicted, const aitensor_t *target, aitensor_t *result)
 
void aimath_q31_default_mse_gradients_mean (const aitensor_t *predicted, const aitensor_t *target, aitensor_t *result)
 
void aimath_q31_default_mse_loss_sum (const aitensor_t *predicted, const aitensor_t *target, void *result)
 
void aimath_q31_default_mse_loss_mean (const aitensor_t *predicted, const aitensor_t *target, void *result)
 

Detailed Description

Math functions for Q31 data type, default implementation.

Version
2.2.0

These functions can be used when no hardware specific implementation is available.

Function Documentation

◆ aimath_q31_default_copy_tensor()

void aimath_q31_default_copy_tensor ( const aitensor_t from,
aitensor_t to 
)

Performs an element wise copy of Q31 tensors.

\[ to \leftarrow from \]

Dimension, shape and quantization parameters of from and to tensors have to be the same.

Example:

uint16_t from_shape[2] = {2, 3};
aimath_q31_params_t from_params = {1, 0}; // {shift, zero point}
int32_t from_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t from = AITENSOR_2D_Q31(from_shape, &from_params, from_data);
uint16_t to_shape[2] = {2, 3};
aimath_q31_params_t to_params = {1, 0}; // {shift, zero point}
int32_t to_data[2*3];
aitensor_t to = AITENSOR_2D_Q31(to_shape, &to_params, to_data);
void print_aitensor(const aitensor_t *tensor)
Printing a tensor to console.
void aimath_q31_default_copy_tensor(const aitensor_t *from, aitensor_t *to)
Performs an element wise copy of Q31 tensors.
Parameters used for the quantized Q31 values, used as property of a tensor.
Definition: aimath_q31.h:149
A tensor in AIfES.
Definition: aifes_math.h:89
Parameters
*fromQ31 tensor to copy from (N-D tensor)
*toQ31 tensor to copy to (N-D tensor)

◆ aimath_q31_default_d_elu()

void aimath_q31_default_d_elu ( const aitensor_t x,
const void *  alpha,
aitensor_t result 
)

Calculates the exponential rectifier (ELU) derivative of each element in a Q31 tensor.

\[ result_{i} = \begin{cases} \alpha \cdot e^{x_i} & \text{if } x_i < 0\\ 1 & \text{if } x_i \geq 0 \end{cases} \]

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
aiscalar_q31_t alpha = AISCALAR_Q31(1.0f, 0, 0);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params; // {shift, zero point}
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
aimath_q31_default_d_elu(&x, &alpha, &result);
print_aitensor(&result);
void aimath_q31_default_d_elu(const aitensor_t *x, const void *alpha, aitensor_t *result)
Calculates the exponential rectifier (ELU) derivative of each element in a Q31 tensor.
Single quantized Q31 value/scalar.
Definition: aimath_q31.h:156
Parameters
*xQ31 tensor to calculate the ELU derivative from (N-D tensor)
*alphaScalar \( \alpha \) (type aiscalar_q31_t)
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_d_leaky_relu()

void aimath_q31_default_d_leaky_relu ( const aitensor_t x,
const void *  alpha,
aitensor_t result 
)

Calculates the leaky rectifier (leaky-ReLU) derivative of each element in a Q31 tensor.

\[ result_{ij} = \begin{cases} alpha & \text{if } x_i < 0\\ 1 & \text{if } x_i \geq 0 \end{cases} \]

The quantization parameters of the result tensor are set to {shift = 0, zero_point = 0} by the function because the output values are either alpha or 1.

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params; // {shift, zero point}
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q31_default_d_leaky_relu(const aitensor_t *x, const void *alpha, aitensor_t *result)
Calculates the leaky rectifier (leaky-ReLU) derivative of each element in a Q31 tensor.
Parameters
*xQ31 tensor to calculate the leaky-ReLU derivative from (N-D tensor)
*alphaScalar \( \alpha \) (type aiscalar_q31_t) for the leakage
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_d_relu()

void aimath_q31_default_d_relu ( const aitensor_t x,
aitensor_t result 
)

Calculates the rectifier (ReLU) derivative of each element in a Q31 tensor.

\[ result_{ij} = \begin{cases} 0 & \text{if } x_i < 0\\ 1 & \text{if } x_i \geq 0 \end{cases} \]

The quantization parameters of the result tensor are set to {shift = 0, zero_point = 0} by the function because the output values are either 0 or 1.

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params; // {shift, zero point}
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q31_default_d_relu(const aitensor_t *x, aitensor_t *result)
Calculates the rectifier (ReLU) derivative of each element in a Q31 tensor.
Parameters
*xQ31 tensor to calculate the ReLU derivative from (N-D tensor)
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_d_sigmoid()

void aimath_q31_default_d_sigmoid ( const aitensor_t sigmoid_x,
aitensor_t result 
)

Calculates the derivative sigmoid of each element in a Q31 tensor.

\[ result_{i} = \sigma'(x_{i}) = \sigma(x_{i}) \cdot (1 - \sigma(x_{i})) \]

The quantization parameters of the result tensor are set to {shift = 34, zero_point = -2^31} by the function because the output values are in the interval (0, 0.25].

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params;
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
aimath_q31_default_d_sigmoid(&result, &result);
print_aitensor(&result);
void aimath_q31_default_sigmoid(const aitensor_t *x, aitensor_t *result)
Calculates the sigmoid of each element in a Q31 tensor.
void aimath_q31_default_d_sigmoid(const aitensor_t *sigmoid_x, aitensor_t *result)
Calculates the derivative sigmoid of each element in a Q31 tensor.
Parameters
*sigmoid_xQ31 tensor with the sigmoid values \( \sigma(x_{i}) \) (N-D tensor)
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_d_softsign()

void aimath_q31_default_d_softsign ( const aitensor_t x,
aitensor_t result 
)

Calculates the softsign activation derivative of each element in a Q31 tensor.

\[ result_{i} = \frac {1} {(1 + |x_i|)^2} \]

The quantization parameters of the result tensor are set to {shift = 32, zero_point = -2^31} by the function because the output values are in the interval (0, 1).

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params; // {shift, zero point}
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q31_default_d_softsign(const aitensor_t *x, aitensor_t *result)
Calculates the softsign activation derivative of each element in a Q31 tensor.
Parameters
*xQ31 tensor to calculate the softsign derivative from (N-D tensor)
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_d_tanh()

void aimath_q31_default_d_tanh ( const aitensor_t tanh_x,
aitensor_t result 
)

Calculates the tanh derivative of each element in a Q31 tensor.

\[ result_{i} = \tanh'(x_{i}) = 1 - \tanh(x_{i}) * \tanh(x_{i}) \]

The quantization parameters of the result tensor are set to {shift = 32, zero_point = -2^31} by the function because the output values are in the interval (0, 1].

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params;
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
aimath_q31_default_d_tanh(&result, &result);
print_aitensor(&result);
void aimath_q31_default_d_tanh(const aitensor_t *tanh_x, aitensor_t *result)
Calculates the tanh derivative of each element in a Q31 tensor.
void aimath_q31_default_tanh(const aitensor_t *x, aitensor_t *result)
Calculates the tanh of each element in a Q31 tensor.
Parameters
*tanh_xQ31 tensor with the tanh values \( \tanh(x_{i}) \) (N-D tensor)
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_elu()

void aimath_q31_default_elu ( const aitensor_t x,
const void *  alpha,
aitensor_t result 
)

Calculates the exponential rectifier (ELU) value of each element in a Q31 tensor.

\[ result_{i} = \begin{cases} \alpha \cdot (e^{x_i} - 1) & \text{if } x_i < 0 \\ x_i & \text{if } x_i \geq 0 \end{cases} \]

The ELU is calculated with a piecewise linear approximation to avoid using exponential functions.

\[ result_{i} = \begin{cases} x_i & \text{if } 0 \leq x_i\\ \alpha \cdot 0.625 \cdot x_i & \text{if } -1 \leq x < 0\\ \alpha \cdot (0.25 \cdot x_i - 0.375) & \text{if } -2 \leq x < -1\\ \alpha \cdot (0.09375 \cdot x_i - 0.6875) & \text{if } -3 \leq x < -2\\ \alpha \cdot (0.03125 \cdot x_i - 0.875) & \text{if } -4 \leq x < -3\\ - \alpha & \text{if } x < -4 \end{cases} \]

The quantization parameters of the result tensor are set to {shift = x.shift, zero_point = x.zero_point} by the function because the output values are in the interval (max(-alpha, min(x)), max(x)].

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
aiscalar_q31_t alpha = AISCALAR_Q31(1.0f, 0, 0);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params; // {shift, zero point}
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
aimath_q31_default_elu(&x, &alpha, &result);
print_aitensor(&result);
void aimath_q31_default_elu(const aitensor_t *x, const void *alpha, aitensor_t *result)
Calculates the exponential rectifier (ELU) value of each element in a Q31 tensor.
Parameters
*xQ31 tensor to calculate the ELU from (N-D tensor)
*alphaScalar \( \alpha \) (type aiscalar_q31_t)
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_init_glorot_uniform()

void aimath_q31_default_init_glorot_uniform ( aitensor_t tensor)

Fills a Q31 tensor with random numbers uniformly within given range, according to Glorot et al.

Same functionality as aimath_q31_default_init_glorot_uniform_cdim() with cin_axis = 0 and cout_axis = 1 (channels last dataformat).

\[ fan_{avg} = \frac{fan_{in} + fan_{out}}{2} \]

\[ r = \sqrt{\frac{3}{fan_{avg}}} \]

\[ tensor_i \in \mathcal{U(-r, r)} \]

Example:

uint16_t tensor_shape[2] = {2, 3};
aimath_q31_params_t tensor_params = {20, 0}; // {shift, zero point}
int32_t tensor_data[2*3];
aitensor_t tensor = AITENSOR_2D_Q31(tensor_shape, &tensor_params, tensor_data);
print_aitensor(&tensor);
void aimath_q31_default_init_glorot_uniform(aitensor_t *tensor)
Fills a Q31 tensor with random numbers uniformly within given range, according to Glorot et al.
See also
Glorot et al., 2010 ( http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf )
Parameters
*tensorQ31 tensor to initialize with random numbers (N-D tensor)

◆ aimath_q31_default_init_glorot_uniform_cdim()

void aimath_q31_default_init_glorot_uniform_cdim ( aitensor_t tensor,
int8_t  cin_axis,
int8_t  cout_axis 
)

Fills a Q31 tensor with random numbers uniformly within given range, according to Glorot et al.

\[ fan_{avg} = \frac{fan_{in} + fan_{out}}{2} \]

\[ r = \sqrt{\frac{3}{fan_{avg}}} \]

\[ tensor_i \in \mathcal{U(-r, r)} \]

Example:

uint16_t tensor_shape[2] = {2, 3};
aimath_q31_params_t tensor_params = {20, 0}; // {shift, zero point}
int32_t tensor_data[2*3];
aitensor_t tensor = AITENSOR_2D_Q31(tensor_shape, &tensor_params, tensor_data);
print_aitensor(&tensor);
void aimath_q31_default_init_glorot_uniform_cdim(aitensor_t *tensor, int8_t cin_axis, int8_t cout_axis)
Fills a Q31 tensor with random numbers uniformly within given range, according to Glorot et al.
See also
Glorot et al., 2010 ( http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf )
Parameters
*tensorQ31 tensor to initialize with random numbers (N-D tensor)
cin_axisAxis of the input channels (negative number means indexing from the end)
cout_axisAxis of the output channels (negative number means indexing from the end)

◆ aimath_q31_default_init_he_uniform()

void aimath_q31_default_init_he_uniform ( aitensor_t tensor)

Fills a Q31 tensor with random numbers uniformly within given range, according to He et al.

Same functionality as aimath_q31_default_init_he_uniform_cdim() with cout_axis = 1 (channels last dataformat).

\[ fan_{avg} = \frac{fan_{in}}{2} \]

\[ r = \sqrt{\frac{3}{fan_{avg}}} \]

\[ tensor_i \in \mathcal{U(-r, r)} \]

Example:

uint16_t tensor_shape[2] = {2, 3};
aimath_q31_params_t tensor_params = {20, 0}; // {shift, zero point}
int32_t tensor_data[2*3];
aitensor_t tensor = AITENSOR_2D_Q31(tensor_shape, &tensor_params, tensor_data);
print_aitensor(&tensor);
void aimath_q31_default_init_he_uniform(aitensor_t *tensor)
Fills a Q31 tensor with random numbers uniformly within given range, according to He et al.
See also
He et al., 2015 ( https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html )
Parameters
*tensorQ31 tensor to initialize with random numbers (N-D tensor)

◆ aimath_q31_default_init_he_uniform_cdim()

void aimath_q31_default_init_he_uniform_cdim ( aitensor_t tensor,
int8_t  cout_axis 
)

Fills a Q31 tensor with random numbers uniformly within given range, according to He et al.

\[ fan_{avg} = \frac{fan_{in}}{2} \]

\[ r = \sqrt{\frac{3}{fan_{avg}}} \]

\[ tensor_i \in \mathcal{U(-r, r)} \]

Example:

uint16_t tensor_shape[2] = {2, 3};
aimath_q31_params_t tensor_params = {20, 0}; // {shift, zero point}
int32_t tensor_data[2*3];
aitensor_t tensor = AITENSOR_2D_Q31(tensor_shape, &tensor_params, tensor_data);
print_aitensor(&tensor);
void aimath_q31_default_init_he_uniform_cdim(aitensor_t *tensor, int8_t cout_axis)
Fills a Q31 tensor with random numbers uniformly within given range, according to He et al.
See also
He et al., 2015 ( https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html )
Parameters
*tensorQ31 tensor to initialize with random numbers (N-D tensor)
cout_axisAxis of the output channels (negative number means indexing from the end)

◆ aimath_q31_default_init_zeros()

void aimath_q31_default_init_zeros ( aitensor_t tensor)

Fills a Q31 tensor with zeros.

\[ tensor_{i} = 0 \]

The function sets all tensor elements, the shift and the zero_point to 0.

Example:

uint16_t tensor_shape[2] = {2, 3};
aimath_q31_params_t tensor_params;
int32_t tensor_data[2*3];
aitensor_t tensor = AITENSOR_2D_Q31(tensor_shape, &tensor_params, tensor_data);
print_aitensor(&tensor);
void aimath_q31_default_init_zeros(aitensor_t *tensor)
Fills a Q31 tensor with zeros.
Parameters
*tensorQ31 tensor to set to zero (N-D tensor)

◆ aimath_q31_default_leaky_relu()

void aimath_q31_default_leaky_relu ( const aitensor_t x,
const void *  alpha,
aitensor_t result 
)

Calculates the leaky rectifier (leaky ReLU) value of each element in a Q31 tensor.

\[ result_{i} = \begin{cases} \alpha \cdot x_i & \text{if } x_i < 0 \\ x_i & \text{if } x_i \geq 0 \end{cases} \]

The quantization parameters of the result tensor are set to {shift = x.shift, zero_point = x.zero_point} by the function because the output values are in the interval (alpha * min(x), max(x)].

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {6, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
aiscalar_q31_t alpha = AISCALAR_Q31(0.01f, 10, 0);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params; // {shift, zero point}
int31_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
aimath_q31_default_leaky_relu(&x, &alpha, &result);
print_aitensor(&result);
void aimath_q31_default_leaky_relu(const aitensor_t *x, const void *alpha, aitensor_t *result)
Calculates the leaky rectifier (leaky ReLU) value of each element in a Q31 tensor.
Parameters
*xQ31 tensor to calculate the leaky ReLU from (N-D tensor)
*alphaScalar \( \alpha \) (type aiscalar_q31_t) for the leakage
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_linear32()

void aimath_q31_default_linear32 ( const aitensor_t a,
const aitensor_t b,
const aitensor_t c,
aitensor_t result 
)

Performs a matrix multiplication of Q31 matrices a and b and adds a vector c to each row.

The addition of the horizontal vector c is performed via broadcast, i.e. element wise in each column Mathematically this broadcast is equal to multiplying c with an vertical vector (with the same number of elements as c) and adding the result to a * b.

** The quantization parameters of the vector c have to be {zero_point = 0, shift = a.shift + b.shift}! **

\[ result = a \cdot b + \left( \begin{array}{c} 1 \\ 1 \\ \vdots \\ 1 \\ \end{array}\right) \cdot c \]

Example:

\[ a = \left( \begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right) \]

\[ b = \left( \begin{array}{rr} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right) \]

\[ c = \left( \begin{array}{rr} 2 & 5 \end{array}\right) \]

\[ result = a \cdot b + \left( \begin{array}{r} 1 \\ 1 \\ 1 \\ \end{array}\right) \cdot c \]

\[ = \left( \begin{array}{rr} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{array}\right) + \left( \begin{array}{rr} 2 & 5 \\ 2 & 5 \\ 2 & 5 \end{array}\right) \]

\[ = \left( \begin{array}{rr} 3 & 7 \\ 6 & 10 \\ 9 & 13 \end{array}\right) \]

Example:

uint16_t a_shape[2] = {3, 3};
aimath_q31_params_t a_params = {1, 0}; // {shift, zero point}
int32_t a_data[3*3] = { 2, 4, 6,
8, 10, 12,
14, 16, 18};
aitensor_t a = AITENSOR_2D_Q31(a_shape, &a_params, a_data);
uint16_t b_shape[2] = {3, 2};
aimath_q31_params_t b_params = {2, 0}; // {shift, zero point}
int32_t b_data[3*2] = {4, 0,
0, 4,
0, 0};
aitensor_t b = AITENSOR_2D_Q31(b_shape, &b_params, b_data);
uint16_t c_shape[2] = {1, 2};
aimath_q31_params_t c_params = {3, 0}; // {shift, zero point}
int32_t c_data[1*2] = {16, 40};
aitensor_t c = AITENSOR_2D_Q31(c_shape, &c_params, c_data);
uint16_t result_shape[2] = {3, 2};
aimath_q31_params_t result_params = {4, 0}; // {shift, zero point}
int32_t result_data[3*2];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
aimath_q31_default_linear32(&a, &b, &c, &result);
print_aitensor(&result);
void aimath_q31_default_linear32(const aitensor_t *a, const aitensor_t *b, const aitensor_t *c, aitensor_t *result)
Performs a matrix multiplication of Q31 matrices a and b and adds a vector c to each row.
Parameters
*aQ31 matrix a (2D tensor of shape [N x K])
*bQ31 matrix b (2D tensor of shape [K x M])
*cQ31 vector c (2D tensor of shape [1 x M])
*resultResulting Q31 matrix (2D tensor of shape [N x M])

◆ aimath_q31_default_mat_mul()

void aimath_q31_default_mat_mul ( const aitensor_t a,
const aitensor_t b,
aitensor_t result 
)

Performs a matrix multiplication of Q31 matrices a and b.

\[ result = a \cdot b \]

Example:

uint16_t a_shape[2] = {3, 3};
aimath_q31_params_t a_params = {1, 0}; // {shift, zero point}
int32_t a_data[3*3] = { 2, 4, 6,
8, 10, 12,
14, 16, 18};
aitensor_t a = AITENSOR_2D_Q31(a_shape, &a_params, a_data);
uint16_t b_shape[2] = {3, 2};
aimath_q31_params_t b_params = {2, 0}; // {shift, zero point}
int32_t b_data[3*2] = {4, 0,
0, 4,
0, 0};
aitensor_t b = AITENSOR_2D_Q31(b_shape, &b_params, b_data);
uint16_t result_shape[2] = {3, 2};
aimath_q31_params_t result_params = {1, 0}; // {shift, zero point}
int32_t result_data[3*2];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
aimath_q31_default_mat_mul(&a, &b, &result);
print_aitensor(&result);
void aimath_q31_default_mat_mul(const aitensor_t *a, const aitensor_t *b, aitensor_t *result)
Performs a matrix multiplication of Q31 matrices a and b.
Parameters
*aQ31 matrix a (2D tensor of shape [N x K])
*bQ31 matrix b (2D tensor of shape [K x M])
*resultResulting Q31 matrix of the multiplication (2D tensor of shape [N x M])

◆ aimath_q31_default_multiply()

void aimath_q31_default_multiply ( const aitensor_t a,
const aitensor_t b,
aitensor_t result 
)

Performs an element wise multiplication of Q31 tensors a and b (Hadamard product)

\[ result = a \circ b \]

Example:

uint16_t a_shape[2] = {2, 3};
aimath_q31_params_t a_params = {1, 0}; // {shift, zero point}
int32_t a_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t a = AITENSOR_2D_Q31(a_shape, &a_params, a_data);
uint16_t b_shape[2] = {2, 3};
aimath_q31_params_t b_params = {2, 0}; // {shift, zero point}
int32_t b_data[2*3] = { 4, -8, 12,
-16, 20, -24};
aitensor_t b = AITENSOR_2D_Q31(b_shape, &b_params, b_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params = {1, 0}; // {shift, zero point}
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
aimath_q31_default_multiply(&a, &b, &result);
print_aitensor(&result);
void aimath_q31_default_multiply(const aitensor_t *a, const aitensor_t *b, aitensor_t *result)
Performs an element wise multiplication of Q31 tensors a and b (Hadamard product)
Parameters
*aQ31 tensor a (N-D tensor)
*bQ31 tensor b (N-D tensor)
*resultResulting Q31 tensor of the element wise multiplication (N-D tensor)

◆ aimath_q31_default_norm_squared()

void aimath_q31_default_norm_squared ( const aitensor_t x,
void *  result 
)

Calculates the squared sum of all elements in a Q31 tensor.

\[ result = \sum_i x_{i}^2 \]

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
aiscalar_q31_t result = {0, 2, 0}; // Value, shift, zero_point
void print_aiscalar(const void *scalar, const aimath_dtype_t *dtype)
Printing a scalar to console.
const aimath_dtype_t * aiq31
The Q31 data-type indicator.
void aimath_q31_default_norm_squared(const aitensor_t *x, void *result)
Calculates the squared sum of all elements in a Q31 tensor.
Parameters
*xQ31 tensor x (N-D tensor)
*resultScalar result (type aiscalar_q31_t)

◆ aimath_q31_default_relu()

void aimath_q31_default_relu ( const aitensor_t x,
aitensor_t result 
)

Calculates the rectifier (ReLU) value of each element in a Q31 tensor.

\[ result_{i} = max(0, x_{i}) \]

The quantization parameters of the result tensor are set to {shift = x.shift, zero_point = x.zero_point} by the function because the output values are in the interval [0, max(x)].

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params;
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q31_default_relu(const aitensor_t *x, aitensor_t *result)
Calculates the rectifier (ReLU) value of each element in a Q31 tensor.
Parameters
*xQ31 tensor to calculate the ReLU from (N-D tensor)
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_scalar_mul()

void aimath_q31_default_scalar_mul ( const void *  scalar,
const aitensor_t a,
aitensor_t result 
)

Performs a scalar multiplication (scaling) of Q31 tensor a and a scalar.

\[ result = scalar \cdot a \]

Example:

uint16_t a_shape[2] = {2, 3};
aimath_q31_params_t a_params = {1, 0}; // {shift, zero point}
int32_t a_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t a = AITENSOR_2D_Q31(a_shape, &a_params, a_data);
aiscalar_q31_t scalar = AISCALAR_Q31(0.1f, 10, 0); // (value, shift, zero_point)
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params = {7, 0}; // {shift, zero point}
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
aimath_q31_default_scalar_mul(&scalar, &a, &result);
print_aitensor(&result);
void aimath_q31_default_scalar_mul(const void *scalar, const aitensor_t *a, aitensor_t *result)
Performs a scalar multiplication (scaling) of Q31 tensor a and a scalar.
Parameters
*scalarScalar (type aiscalar_q31_t)
*aQ31 tensor a (N-D tensor)
*resultResulting Q31 tensor of the scalar multiplication (N-D tensor)

◆ aimath_q31_default_sigmoid()

void aimath_q31_default_sigmoid ( const aitensor_t x,
aitensor_t result 
)

Calculates the sigmoid of each element in a Q31 tensor.

\[ result_{i} = \sigma(x_{i}) = \frac{1}{1 + e^{-x_{i}}} \]

The sigmoid is calculated with a piecewise linear approximation (PLAN) to avoid using exponential functions.

\[ result_{i} = \sigma_{PLAN}(x_i) = \begin{cases} 1 & \text{if } 5 \leq x_i\\ 0.03125 \cdot |x_i| + 0.84375 & \text{if } 2.375 \leq x_i < 5\\ 0,0125 \cdot |x_i| + 0,625 & \text{if } 1 \leq x_i < 2.375\\ 0,25 \cdot |x_i| + 0.5 & \text{if } 0 \leq x_i < 1\\ 1 - \sigma_{PLAN}(- x_i) & \text{if } x_i < 0\\ \end{cases} \]

The quantization parameters of the result tensor are set to {shift = 32, zero_point = -2^31} by the function because the output values are in the interval (0, 1).

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params;
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
print_aitensor(&result);
See also
Sigmoid PLAN: https://www.researchgate.net/figure/Comparative-representation-of-the-sigmoid-function-and-PLAN-approximation_fig7_228618304
Parameters
*xQ31 tensor to calculate the sigmoid from (N-D tensor)
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_softmax()

void aimath_q31_default_softmax ( const aitensor_t x,
aitensor_t result 
)

Calculates the softmax value of each batch element (row) of a Q31 tensor.

\[ result_{i} = \frac{e^{x_i}}{\sum_{j=1}^{K} e^{x_j}} = \frac{e^{x_i - x_{max}}}{\sum_{j=1}^{K} e^{x_j - x_{max}}} \]

The exponential function within softmax is calculated with a piecewise linear approximation (PLA) in the interval [-inf, 0].

\[ result_{i} = e_{PLA}(x_i - x_{max}) = \begin{cases} 0.63 \cdot (x_i - x_{max}) + 1 & \text{if } -1 \leq (x_i - x_{max}) < 0\\ 0.23 \cdot (x_i - x_{max}) + 0.6 & \text{if } -2 \leq (x_i - x_{max}) < -1\\ 0.09 \cdot (x_i - x_{max}) + 0.32 & \text{if } -3 \leq (x_i - x_{max}) < -2\\ 0.025 \cdot (x_i - x_{max}) + 0.125 & \text{if } -5 \leq (x_i - x_{max}) < -3\\ 0 & \text{if } (x_i - x_{max}) < -5\\ \end{cases} \]

The quantization parameters of the result tensor are set to {shift = 32, zero_point = -2147483648} by the function because the output values are in the interval (0, 1).

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params;
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q31_default_softmax(const aitensor_t *x, aitensor_t *result)
Calculates the softmax value of each batch element (row) of a Q31 tensor.
Parameters
*xQ31 tensor to calculate the softmax from (N-D tensor)
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_softsign()

void aimath_q31_default_softsign ( const aitensor_t x,
aitensor_t result 
)

Calculates the softsign value of each element in a Q31 tensor.

\[ result_{i} = \frac {x_i} {1 + |x_i|} \]

The quantization parameters of the result tensor are set to {shift = 31, zero_point = 0} by the function because the output values are in the interval (-1, 1).

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params;
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q31_default_softsign(const aitensor_t *x, aitensor_t *result)
Calculates the softsign value of each element in a Q31 tensor.
Parameters
*xQ31 tensor to calculate the softsign from (N-D tensor)
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_sqrt()

int64_t aimath_q31_default_sqrt ( int64_t  x)

Calculates square root of an int64 value.

Parameters
xq31 Value to calculate square root of
Returns
Square root of x

◆ aimath_q31_default_sum_channelwise()

void aimath_q31_default_sum_channelwise ( const aitensor_t x,
int8_t  channel_axis,
aitensor_t result 
)

Sums up all values of a channel of the Q31 tensor x.

Calculates the sum of all elements of each channel c. The result tensor is 1D:

\[ result_c = \sum_i(x_{ci}) \]

Parameters
xQ31 input tensor (N-D)
channel_axisIndex of the channel axis (negative values mean indexing from the end).
resultQ31 result vector (1D)

◆ aimath_q31_default_tanh()

void aimath_q31_default_tanh ( const aitensor_t x,
aitensor_t result 
)

Calculates the tanh of each element in a Q31 tensor.

\[ result_{i} = \tanh(x_{i}) = \frac{e^{x_i} - e^{-x_i}}{e^{x_i} + e^{-x_i}} \]

The tanh is calculated with a piecewise linear approximation (PLA) to avoid using exponential functions.

\[ result_{i} = \tanh_{PLA}(x_i) = 2 \cdot \sigma(2x_i) - 1 = \begin{cases} 1 & \text{if } 5 \leq x_i\\ 0.0625 \cdot |x_i| + 0.6875 & \text{if } 2.375 \leq x_i < 5\\ 0.25 \cdot |x_i| + 0.25 & \text{if } 1 \leq x_i < 2.375\\ 0.5 \cdot |x_i| & \text{if } 0 \leq x_i < 1\\ - \tanh_{PLA}(- x_i) & \text{if } x_i < 0\\ \end{cases} \]

The quantization parameters of the result tensor are set to {shift = 31, zero_point = 0} by the function because the output values are in the interval (-1, 1).

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params;
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
print_aitensor(&result);
Parameters
*xQ31 tensor to calculate the tanh from (N-D tensor)
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_tensor_add_different_shift()

void aimath_q31_default_tensor_add_different_shift ( const aitensor_t a,
const aitensor_t b,
aitensor_t result 
)

Performs an element wise addition of Q31 tensors a and b with different shifts.

\[ result = a + b \]

The tensors a, b and result can have different shifts. The function will rescale the tensors internally to perform the addition. If a, b and result have the same shift, use aimath_q31_default_tensor_add_same_shift() instead because it is more efficient.

Example:

uint16_t a_shape[2] = {2, 3};
aimath_q31_params_t a_params = {1, 0}; // {shift, zero point}
int32_t a_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t a = AITENSOR_2D_Q31(a_shape, &a_params, a_data);
uint16_t b_shape[2] = {2, 3};
aimath_q31_params_t b_params = {2, 0}; // {shift, zero point}
int32_t b_data[2*3] = { 4, -8, 12,
-16, 20, -24};
aitensor_t b = AITENSOR_2D_Q31(b_shape, &b_params, b_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params = {0, 0}; // {shift, zero point}
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q31_default_tensor_add_different_shift(const aitensor_t *a, const aitensor_t *b, aitensor_t *result)
Performs an element wise addition of Q31 tensors a and b with different shifts.
Parameters
*aQ31 tensor a (N-D tensor)
*bQ31 tensor b (N-D tensor)
*resultResulting Q31 tensor of the element wise addition (N-D tensor)

◆ aimath_q31_default_tensor_add_same_shift()

void aimath_q31_default_tensor_add_same_shift ( const aitensor_t a,
const aitensor_t b,
aitensor_t result 
)

Performs an element wise addition of Q31 tensors a and b with same shifts.

\[ result = a + b \]

The tensors a, b and result must have the same shift. If a, b and result have the different shifts, use aimath_q31_default_tensor_add_different_shift() instead.

Example:

uint16_t a_shape[2] = {2, 3};
aimath_q31_params_t a_params = {1, 0}; // {shift, zero point}
int32_t a_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t a = AITENSOR_2D_Q31(a_shape, &a_params, a_data);
uint16_t b_shape[2] = {2, 3};
aimath_q31_params_t b_params = {1, 0}; // {shift, zero point}
int32_t b_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t b = AITENSOR_2D_Q31(b_shape, &b_params, b_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params = {1, 0}; // {shift, zero point}
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q31_default_tensor_add_same_shift(const aitensor_t *a, const aitensor_t *b, aitensor_t *result)
Performs an element wise addition of Q31 tensors a and b with same shifts.
Parameters
*aQ31 tensor a (N-D tensor)
*bQ31 tensor b (N-D tensor)
*resultResulting Q31 tensor of the element wise addition (N-D tensor)

◆ aimath_q31_default_tensor_init_uniform()

void aimath_q31_default_tensor_init_uniform ( aitensor_t tensor,
float  from,
float  to 
)

Fills a Q31 tensor with random numbers created from a uniform distribution within given range.

\[ tensor_i \in \mathcal{U(from, to)} \]

Example:

uint16_t tensor_shape[2] = {2, 3};
aimath_q31_params_t tensor_params = {20, 0}; // {shift, zero point}
int32_t tensor_data[2*3];
aitensor_t tensor = AITENSOR_2D_Q31(tensor_shape, &tensor_params, tensor_data);
print_aitensor(&tensor);
void aimath_q31_default_tensor_init_uniform(aitensor_t *tensor, float from, float to)
Fills a Q31 tensor with random numbers created from a uniform distribution within given range.
Parameters
*tensorQ31 tensor to initialize with random numbers (N-D tensor)
fromMinimum value of the uniform distribution
toMaximum value of the uniform distribution

◆ aimath_q31_default_tensor_sqrt()

void aimath_q31_default_tensor_sqrt ( const aitensor_t x,
aitensor_t result 
)

Calculates the element wise square root of a Q31 tensor.

\[ result_{i} = \sqrt{x_{i}} \]

Example:

uint16_t x_shape[2] = {2, 3};
aimath_q31_params_t x_params = {1, 0}; // {shift, zero point}
int32_t x_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t x = AITENSOR_2D_Q31(x_shape, &x_params, x_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params = {10, 0}; // {shift, zero point}
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q31_default_tensor_sqrt(const aitensor_t *x, aitensor_t *result)
Calculates the element wise square root of a Q31 tensor.
Parameters
*xQ31 tensor to calculate the square root from (N-D tensor)
*resultResulting Q31 tensor (N-D tensor)

◆ aimath_q31_default_tensor_sub_different_shift()

void aimath_q31_default_tensor_sub_different_shift ( const aitensor_t a,
const aitensor_t b,
aitensor_t result 
)

Performs an element wise subtraction of Q31 tensors a and b with different shifts.

\[ result = a - b \]

The tensors a, b and result can have different shifts. The function will rescale the tensors internally to perform the subtraction. If a, b and result have the same shift, use aimath_q31_default_tensor_sub_same_shift() instead because it is more efficient.

Example:

uint16_t a_shape[2] = {2, 3};
aimath_q31_params_t a_params = {1, 0}; // {shift, zero point}
int32_t a_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t a = AITENSOR_2D_Q31(a_shape, &a_params, a_data);
uint16_t b_shape[2] = {2, 3};
aimath_q31_params_t b_params = {2, 0}; // {shift, zero point}
int32_t b_data[2*3] = { 4, 8, 12,
16, 20, 24};
aitensor_t b = AITENSOR_2D_Q31(b_shape, &b_params, b_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params = {0, 0}; // {shift, zero point}
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q31_default_tensor_sub_different_shift(const aitensor_t *a, const aitensor_t *b, aitensor_t *result)
Performs an element wise subtraction of Q31 tensors a and b with different shifts.
Parameters
*aQ31 tensor a (N-D tensor)
*bQ31 tensor b (N-D tensor)
*resultResulting Q31 tensor of the element wise subtraction (N-D tensor)

◆ aimath_q31_default_tensor_sub_same_shift()

void aimath_q31_default_tensor_sub_same_shift ( const aitensor_t a,
const aitensor_t b,
aitensor_t result 
)

Performs an element wise subtraction of Q31 tensors a and b with same shifts.

\[ result = a - b \]

The tensors a, b and result must have the same shift. If a, b and result have the different shifts, use aimath_q31_default_tensor_sub_different_shift() instead.

Example:

uint16_t a_shape[2] = {2, 3};
aimath_q31_params_t a_params = {1, 0}; // {shift, zero point}
int32_t a_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t a = AITENSOR_2D_Q31(a_shape, &a_params, a_data);
uint16_t b_shape[2] = {2, 3};
aimath_q31_params_t b_params = {1, 0}; // {shift, zero point}
int32_t b_data[2*3] = { 2, 4, 6,
8, 10, 12};
aitensor_t b = AITENSOR_2D_Q31(b_shape, &b_params, b_data);
uint16_t result_shape[2] = {2, 3};
aimath_q31_params_t result_params = {1, 0}; // {shift, zero point}
int32_t result_data[2*3];
aitensor_t result = AITENSOR_2D_Q31(result_shape, &result_params, result_data);
print_aitensor(&result);
void aimath_q31_default_tensor_sub_same_shift(const aitensor_t *a, const aitensor_t *b, aitensor_t *result)
Performs an element wise subtraction of Q31 tensors a and b with same shifts.
Parameters
*aQ31 tensor a (N-D tensor)
*bQ31 tensor b (N-D tensor)
*resultResulting Q31 tensor of the element wise subtraction (N-D tensor)

◆ aimath_q31_default_transpose_vector()

void aimath_q31_default_transpose_vector ( aitensor_t vector)

Transposes a Q31 vector.

The given tensor must be a vector (2D tensor of shape [1 x N] or [N x 1]).

\[ vector \leftarrow vector^T \]

Example:

uint16_t vector_shape[2] = {1, 3};
aimath_q31_params_t vector_params = {1, 0}; // {shift, zero point}
int32_t vector_data[2*3] = { 2, -4, 6};
aitensor_t vector = AITENSOR_2D_Q31(vector_shape, &vector_params, vector_data);
print_aitensor(&vector);
void aimath_q31_default_transpose_vector(aitensor_t *vector)
Transposes a Q31 vector.
Parameters
*vectorQ31 vector (2D tensor of shape [1 x N] or [N x 1])

◆ aimath_q31_default_zero_tensor()

void aimath_q31_default_zero_tensor ( aitensor_t tensor)

Fills a Q31 tensor with zeros.

\[ tensor_{i} = 0 \]

The function sets all tensor elements to the zero_point given in the tensor parameters.

Example:

uint16_t tensor_shape[2] = {2, 3};
aimath_q31_params_t tensor_params = {1, 0}; // {shift, zero point}
int32_t tensor_data[2*3] = { 2, -4, 6,
-8, 10, -12};
aitensor_t tensor = AITENSOR_2D_Q31(tensor_shape, &tensor_params, tensor_data);
print_aitensor(&tensor);
void aimath_q31_default_zero_tensor(aitensor_t *tensor)
Fills a Q31 tensor with zeros.
Parameters
*tensorQ31 tensor to set to zero (N-D tensor)