AIfES 2
2.0.0
|
General Leaky ReLU layer struct. More...
#include <ailayer_leaky_relu.h>
Data Fields | |
ailayer_t | base |
Inherited field members from general ailayer struct. | |
Layer configuration | |
Required configuration parameters for the layer These fields have to be configured by the user before calling the initializer function. | |
void * | alpha |
Parameter \( \alpha \) used to calculate Leaky ReLU function for input values < 0. | |
const aimath_dtype_t * | alpha_dtype |
Data type of scalar parameter \( \alpha \). | |
Math functions | |
Required data type specific math functions | |
void(* | leaky_relu )(const aitensor_t *x, const void *alpha, aitensor_t *result) |
Required math function: Leaky ReLU. More... | |
void(* | d_leaky_relu )(const aitensor_t *x, const void *alpha, aitensor_t *result) |
Required math function: Derivative of Leaky ReLU. More... | |
void(* | multiply )(const aitensor_t *a, const aitensor_t *b, aitensor_t *result) |
Required math function: Element wise tensor multiplication. More... | |
General Leaky ReLU layer struct.
void(* d_leaky_relu) (const aitensor_t *x, const void *alpha, aitensor_t *result) |
Required math function: Derivative of Leaky ReLU.
Requires a math function that calculates the element wise Leaky ReLU derivative of a tensor:
\[ result_{i} = \begin{cases} \alpha & \text{if } x_i < 0\\ 1 & \text{if } x_i \geq 0 \end{cases} \]
x | N-dimensional tensor (input) |
result | N-dimensional tensor (output) |
void(* leaky_relu) (const aitensor_t *x, const void *alpha, aitensor_t *result) |
Required math function: Leaky ReLU.
Requires a math function that calculates the element wise Leaky ReLU of a tensor:
\[ result_{i} = \begin{cases} \alpha \cdot x_i & \text{if } x_i < 0 \\ x_i & \text{if } x_i \geq 0 \end{cases} \]
x | N-dimensional tensor (input) |
result | N-dimensional tensor (output) |
void(* multiply) (const aitensor_t *a, const aitensor_t *b, aitensor_t *result) |
Required math function: Element wise tensor multiplication.
Requires a math function that multiplies two tensors element wise:
\[ result = a \circ b \]